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Abstract. In order to bootstrap shared communication systems, robots must have
a non-verbal way to influence the attention of one another. This chapter presents
an experiment in which a robot learns to interpret pointing gestures of another
robot. We show that simple feature-based neural learning techniques permit reli-
ably to discriminate between left and right pointing gestures. This is a first step
towards more complex attention coordination behaviour. We discuss the results
of this experiment in relation to possible developmental scenarios about how chil-
dren learn to interpret pointing gestures.

1 Introduction

Experiments with robots have successfully demonstrated that shared communication
systems could be negotiated between autonomous embodied agents [1, 2, 3, 4, 5, 6]. In
these experiments, robots draw attention through verbal means to an object of their
environment. In order to bootstrap these conventional communication systems, it is
crucial that the robots have a non-verbal way to influence the attention of other robots.
They can for instance point to the topic of the interaction. This non-verbal form of
communication is necessary as the robots have no direct access to the “meanings” used
by the other robots. They must guess it using non-linguistic cues. The interpretation
of pointing gestures must therefore be sufficiently reliable, at least initially when the
system is bootstrapping. Once the language is in place, such kind of external feedback
is less crucial and can even be absent [7].

Research in gaze or pointing interpretation is active in the context of human robot
interaction (e.g. [8, 9, 10, 11, 12, 13]). By contrast, only few works explore the same
issues for interaction between autonomous robots. A small number of solutions have
been proposed to enable pointing and pointing interpretation in a variety of contexts
(e.g. [14]). The focus of the present chapter concerns how robots can learn to interpret
pointing gestures.

This chapter presents a model in which pointing gesture recognition is learned us-
ing a reward-based system. This model assumes, for instance, that a robot will often
see something interesting from its point of view when looking in the direction where
another robot is pointing to. It can be a particular salient feature of the environment, or
an object which serves a current need (e.g. the charging station), or an opportunity for
learning [15]. This approach is in line with Carlson and Triesch’s computational model
of the emergence of gaze following based on reinforcement learning [16]. Their model
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has been tested in a virtual environment by Jasso et al. [17]. To the best of our knowl-
edge, this chapter represents the first attempt to show that a robot can learn to interpret
the pointing gestures of another robot.

The rest of the paper describes the robotic experiment we conducted. We then dis-
cuss the limitation and possible extensions of this preliminary investigation.

2 Robot Experiments

2.1 The Interaction Scenario

Here we describe and show robot experiments where a pointing gesture is learned to be
classified as either left or right. For these experiments, two Sony AIBOs were sitting
on the floor, facing each other (see figure 1). One of the robots (the adult) is randomly
pointing towards an object on the left or right side of its body using its left or right front
leg, respectively. The other robot (the child) is watching it. From looking at the pointing
gesture of the other robot, the learning robot guesses the direction and starts looking for
an object on this side. Finding the object on this side represents a reward.

Fig. 1. An example of pointing shown with two robots. The robot on the left represents the adult
who is pointing, the robot on the right represents the child who is learning to interpret the pointing
gesture

Since the focus of this experiment is learning of pointing recognition and not point-
ing, this skill is hardwired in the adult robot. The robot is visually tracking a coloured
object on its left or right side, thereby facing the object. Pointing is achieved by simply
copying the joint angle of the head to the joint angle of the arm. Note that the pointing
robot takes on an exact pointing position and does not only distinguish between the left
and the right side.

2.2 Image Processing and Feature Space

A sample camera image from the robot’s point of view can be seen in figure 2 left. For
the experiments, the robot took 2300 pictures focusing on its pointing partner, 1150 for
each pointing direction. The situations in which the pictures have been taken varied in
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the distance between the two robots, the viewing angle, the lighting conditions and the
backgrounds (three different backgrounds).

From the original camera image, a small number of features has to be selected to
facilitate the learning of interpreting the pointing gesture. We decided to apply two
main filters to the image. One filter extracts the brightness of the image, the other filter
extracts horizontal and vertical edges. These choices are biologically motivated. Eyes
are very sensitive to brightness levels, and edges are the independent components of
natural scenes [18]. The original image I is thus transformed to I ′ using a filter f :

I
f−→ I ′

For both filters, the colour image is transformed into greyscale first with pixel values
between 0 and 255. In the subsequent steps, the image is divided into its left part and
its right part (see figure 3). This is justified by the robot always centering on the other
robot’s face using an independent robot tracking mechanism, thus dividing the image
into the right half of the other robot and its left half.

I ′ −→ I ′L, I ′R

The brightness filter Bθ applies a threshold θ to the image, which sets all pixels with
a value greater than θ to 255, and all others to 0. For the experiments, values of θ = 120
and θ = 200 have been used. For the edge filter, we chose two Sobel filters SH and SV

(see [19]) which extracts the horizontal and the vertical edges, respectively. An example
of an image transformed by the filters can be seen in figure 2.

To the filtered images I ′, different operators op can be applied to extract low-
dimensional features. These operators are the centre of mass µ = (µx, µy) and the
sum Σ.

I ′
op−→ q

where q is the resulting scalar feature.
The four filters B120, B200, SH and SV together with the three operators µx, µy and

Σ applied to both the left and the right side of the image I result in 4 · 3 · 2 = 24

Fig. 2. Left: A robot pointing to its left side as seen from another robot’s camera. The child robot
tracks the adult robot in order to keep it in the centre of its visual field. Centre: Feature extraction
for brightness using a threshold θ. Right: Feature extraction for horizontal edges using a Sobel
edge detector
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Fig. 3. Feature extraction from the original camera image

different features qL and qR (see figure 3). We take the differences between the left and
right features resulting in 12 new features v = qL − qR.

2.3 Feature Selection

We selected a subset of the features by applying pruning methods. This is done by
evaluating a subset of attributes by considering the individual predictive ability of each
feature along with the degree of redundancy between them. Subsets of features that are
highly correlated with the class while having low intercorrelation are preferred. The
method used was greedy hillclimbing augmented with a backtracking facility provided
by WEKA [20]. From the 12 features available to the robot, 3 have been selected to
be the most meaningful: B200 ◦ µy , SH ◦ Σ and SV ◦ Σ. Their values for all images
are depicted in figure 4. Intuitively, the robot lifting its arm results in a vertical shift of
brightness on this side of the image, an increase of horizontal edges and a decrease of
vertical edges on this side.

For comparison, we also calculated the three least successful features. They turned
out to be B200 ◦ µx, B120 ◦ µx and SV ◦ µy .

Fig. 4. Most successful scalar features for pointing gesture recognition from an image and the
frequency of their values in the image data set. The red values are taken from pointing towards
the left, the blue ones from pointing towards the right. Left: B200 ◦ µy . Centre: SH ◦ Σ. Right:
SV ◦ Σ
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3 Results

For learning the pointing gesture recognition, we used a multi-layer-perceptron (MLP)
with the selected features as input, 3 neurons in the hidden layer, and the pointing
direction (left or right) coded with two neurons as output. The learning algorithm is
backpropagation with a learning rate λ = 0.3 and momentum m = 0.2. The evaluation
is based on a 10-fold cross validation.

We chose backpropagation as a supervised learning algorithm which is comparable
to a reward-based system in case of a binary decision. The choice of using MLPs and
backpropagation is arbitrary and can be replaced by any other suitable machine learn-
ing technique involving reward. It is however sufficient to show that pointing gesture
recognition can be easily learned between two robots.

Table 1. Learning results of different input features using 10-fold cross validation on the dataset
of 2300 images

features MLP success rate
best 3 3-3-2 95.96%

worst 3 3-3-2 50.74%
all 12 12-7-2 98.83%

The success rate for the three chosen features (figure 4) is 95.96% (see table 1) using
a 3-3-2 MLP and one epoch of training. When using all the 12 difference values v as
inputs to a 12-7-2 MLP, the success rate increases to 98.83%. The success rate for the
worst three features and one epoch of training is 50.74%, just slightly above chance.

In figure 5, the progress of learning can be monitored. The upper graph shows the
error curve when the images of the pointing robot are presented in their natural order,
alternating between left and right. The lower graph shows the error curve for images
presented in a random order from a pre-recorded sequence. The error decreases more
rapidly in the ordered sequence, but varies when conditions are changed.

4 Discussion

4.1 Pointing Interpretation and Intentional Understanding

We showed that with the current setup, a robot can learn to interpret another robot’s
pointing gesture. Although the pointing gesture of the adult robot can vary continuously
depending on the position of the object, the interpretation of the pointing direction is
either left or right. This corresponds to primary forms of attention detection as they can
be observed in child development. Mutual gaze between an adult and a child, a special
case of attentional behaviour, occurs first around the age of three months. At the age of
about six months, infants are able to discriminate between a left or right position of the
head and gaze of their parents, but the angle error can be as large as 60 degrees [21]. At
the age of about nine months, the gaze angle can be detected correctly. Pointing gestures
only start to be interpreted at the age of around one year [21] (see table 2). Children start
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Fig. 5. Error of MLP during learning. Top: sequence of images in natural order. Bottom: random
order of training images

to point first at the age of 9 months [22]. It is usually seen as a request for an object
which is outside the reach of the child, and even occurs when no other person is in the
room. This is called imperative pointing. At the age of 12 months, pointing behaviour
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Table 2. Developmental timelines of attention detection and pointing in humans

Age from: Attention detection Attention manipulation

0-3 m Mutual gaze - Eye contact detection
6 m Discrimination between left and right

position of head and gaze
9 m Gaze angle detection - fixation on the

first salient object encountered
Imperative Pointing: Drawing attention
as a request for reaching an object (atten-
tion not monitored)

12 m Gaze angle detection - fixation on any
salient object encountered - Accuracy in-
creased in the presence of a pointing ges-
ture

Declarative Pointing: Drawing attention
using gestures

18 m Gaze following toward object outside the
field of view - Full object permanence

becomes declarative and is also used to draw attention to something interesting in the
environment [23].

It is feasible to include the detection of a continuous angle of the pointing in a
robotic setup. This would involve changing the current binary decision to a continuous
value (possibly coded with population coding). But a higher accuracy is probably not
sufficient to achieve efficient pointing interpretation. To truly learn the exact meaning of
a pointing gesture, deeper issues are involved. Pointing interpretation in child develop-
ment starts at an age where the infant begins to construct an intentional understanding
of the behaviour of adults. This means that their actions are parsed as means towards
particular goals. It could therefore be argued that pointing interpretation is much more
than a geometrical analysis [23]. It involves a shared intentional relation to the world
[24]. Developing some form of intentional understanding in a robot is one of the most
challenging unsolved problems for developmental robotics [25].

4.2 Co-development of Pointing Gestures and Pointing Interpretation

In our robotic setup, the meaning of one gesture meaning ‘left’ and another gesture
meaning ‘right’ could easily be reversed, or even completely different gestures could
be used. The pointing movement of the adult robot was arbitrarily chosen to resem-
ble a human pointing gesture. It is not clear that this gesture is the most adapted for
unambiguous interpretations given the perceptual apparatus of the robots. In this per-
spective, it would be interesting to investigate a co-development between a pointing
robot and a robot trying to understand pointing gestures. Situations of co-development
between pointing and pointing gesture recognition could lead to interesting collective
dynamics. Given the embodiment of the robots and the environmental conditions, some
particular gestures may get selected for efficiency and learnability. Features that make
them unambiguous and easy to transmit will be kept, whereas inefficient traits should
be discarded. It has been argued that similar dynamics play a pivotal role for shaping
linguistic systems [26].
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4.3 Pointing and the Mirror Neuron System

Taking inspiration from current research in artificial mirror neuron systems [27], it
would be possible to design a robot that interprets pointing gestures of others in relation
with its own pointing ability. However, it is not clear whether the ability of pointing and
pointing detection are correlated in human child development. Desrochers, Morisette
and Ricard [28] observed that pointing seems to occur independently of pointing ges-
ture recognition during infant development. These findings also seem to suggest that
pointing does not simply arise from imitative behaviour.

4.4 Adult Robot Behaviour and Scaffolding

In the current setup, the adult robot randomly points at objects, its behaviour does not
depend on the behaviour or the reaction of the child robot. Interactions between humans
are very different. When pointing at something to show it to the child, a human adult
carefully observes the attentional focus of the child and adjusts its behaviour to it. In
some cases, the adult might even point to an object the child is already paying attention
to in order to strengthen the relationship [29].

4.5 Pointing and Cross-Correlation

Nagai et al. [12] have argued in the context of human-robot interaction that simply the
correlation between the presence of objects in general and gaze is sufficient for learning
how to interpret gaze (without the necessity of an explicit feedback). Similar techniques
based on cross-correlation could also be tried in the context of pointing interpretation
between two robots. This type of learning relies on the assumption that the correlation is
sufficiently strong to be discovered in practice. It is possible that a combination of both
cross-correlation and reward based processes results in an efficient strategy for learning
of pointing interpretation.

5 Conclusions

The interpretation of pointing is only one of the prerequisites necessary for bootstrap-
ping human-like communication between autonomous robots. This chapter presents a
first experiment showing how a robot can learn to interpret pointing gestures of another
robot. In our future work, we will address the limitations of this initial prototype that
have been discussed, and investigate the dynamics of social coordination and attention
manipulation not yet investigated in this work.
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