Computer Vision for AIBOs

V.V. Hafner, 05/2006

AIBO Tech Specs (inkl. Kamera)

r

Teaching a Ne
Old Trick

The AIBO

e Sony Entertainment Robot
* Released in 1999

* First production run: 3000 in
Japan, 2000 in US; sold out in
Japan in 20 minutes and in US in
four days

e $2000 - but good specs

* Connects through wireless
networks

* Acts like a dog: chases its ball,
finds its bone, etc.

AIBO’s Nuts and Bolts

e 576 MHz MIPS Processor
e 64 MB RAM

* 3 Infrared Sensors:
— Short-range head sensor (Range: 50-500 mm)
— Long-range head sensor (200-1500 mm)
— “Emergency” chest sensor (100-900 mm)

* 416x320 pixel nose-mounted camera
* Several joints and degrees of freedom

From AIBO’s Point of View

YUV (Luminance, Chrominance)

e Similar to YIQ and /[
YCbCr |
e Used for the PAL and |
SECAM broadcast 5 _
television system W ot e
bR PR SR SR e
* Amount of information BT L L gl

ik
A

needed to define a
color is greatly
reduced

Helligkeits- und Kantendetektor

Beispiel flr Pointing Detektion

I!

I!

|

— 0
.-

20

|

o
A~

Op

URBI Camera Device

 camera.shutter :

* camera.gain :

* camera.wb :

* camera.format :

* camera.jpegfactor :
* camera.resolution :

* camera.reconstruct :

* camera.width
* camera.height :
* camera.xfov :

e camera.yfov :

URBI camera device

the camera shutter speed: 1=SLOW (default), 2=MID, 3=FAST

the camera gain; 1=LOW, 2=MID, 3=HIGH (default)

the camera white balance: 1=INDOOR (default), 2=OUTDOOR,3=FLUO
the camera image format: 0=YCbCr 1=jpeg (default)

the jpeg compression factor (0 to 100). Default=80

the image resolution: 0:208x160 (default) 1:104x80 2:52x40
reconstruction of the high resolution image(slow): 0:no (default) 1:yes
image width

image height

camera X Field Of View (degrees)
camera y Field Of View (degrees)

The Ball Soft Device

Detecting a ball involves image processing and cannot be written directly in URBI for
obvious efficiency reasons. The best way to provide such components (like visual
processing or sound processing) is to write a soft device in C++, Java or Matlab, and to
interface it in URBI. We will not describe at this stage how to write such a "soft" device,
but instead we will already use one: the ball soft device.

The ball soft device is directly integrated in the Aibo URBI server and you can use it
directly, just like any physical device. It has no ball.val variable but it has a ball.x and
ball.y variable which are equal to the coordinate of the ball in the image between -1/2
and 1/2. When there is a ball visible, ball.visible is equal to 1, zero otherwise. It also
have a ball.size variable which give the size of the ball in the image, expressed as a
number of pixels. These simple soft device variables are already enough to do many
interesting applications, as we will see below.

Kantenerkennung — Methoden und Beispiele

N
=
N

Convolution Filter

Smoothing

a0
100
150
Pl
230
300
330

400

430

-1DD 200 300 400 Eﬂd 600 100 200 Jo0a 400 a0a 600

[111;
111;
111]

Matlab code

% Image processing Beispiele
% Verena V. Hafner, 05/2006

Image=imread(‘arena.jpg’),
colormap(gray);
im=single(Image);
imagesc(Image);

% difference of Gaussian approximation
mask = [-1-1-1;-1 8 -1;-1 -1 -1];
test_im1=conv2(im,mask,'same’);
figure(2);

colormap(gray);

imagesc(test_im1);

% smoothing
mask=[111;111;111];
test_im5=conv2(im,mask,'same’);
test_im5=conv2(test_im5,mask,'same’);
test_im5=conv2(test_im5,mask,'same’);
figure(6);

colormap(gray);

imagesc(test_im5);

%horizontal edge detection

mask = [1; -1];
test_im3=conv2(im,mask,'same’);
figure(4);

colormap(gray);
imagesc(test_im3);

% canny edge filter

test_im4 =test_im2.A2 + test_im3./2;
figure(5);

colormap(gray);

imagesc(test_im4);

%test_im5 = (test_im4 > 0);
%figure(6);
%colormap(gray);
%imagesc(test_im5);

Vertikale Kantenerkennung

a0
100
150
Pl
230
300
330
400

430

100 200 300 400 500 KOO 100 200 300 400 5000 B0

Horizontale Kantenerkennung

a0
100
150
Pl

200 S

Canny Edge Detector

a0
100
150
Pl
230
300
330
400

430

J ' i |
100 200 300 400 200 600 100 paui] 400 400 a0n B00

DoG (Difference of Gaussian) Edge Detektor

300

Motion

e T T T Er
P e e L
e e e e L

L e R

———t — —+ —+ =+

[B e e e o
) L]
) L]

FTETETE R R R R R b £ A
L I I R
L I I R

-

_I“

-

Measuring optic flow using spatial and temporal gradients

Optical Flow

B
B
B A,
B A A,
B
B
B A,
B A A,
B
B
B A,
B A A,
B
B
B A,
B A A,
B
B
B A,

L R I e e B I e R
B =~ —F = =~~~ — — — — — —+
B — = — — — — —F —F — — —F — — — — — — —+
F— = = = = — — = — =+ =t —F = — — — — — —+
P — b ——— — —— — — — — —+

The Horn-Schunck method makes use of the simplest local structure that can give
information about motion: the grey-level gradient.

I e
L A

!
!
:

}
!
}

T

Tt

PSS

i

"

e Twm

RS
NN N
WO N

.
t
!
i

'
'
f
!

.
P A
A58

TTC (time to contact)

* Diving Gannett’s
— Birds must draw in wings before contact with

water

* Velocity, height varies
* TTC constant

Was ist die TTC?

* TTC = size / change in size over time

(x)=x/x

Force

In the Aibo version, you control the joint positions, but | don't want to control my robot joints in position
but in force instead. Can you do that with URBI ?

Yes. The Aibo server do not provide a direct way of controlling the joint force, because the
underlying hardware is working with positions. For that reason, the URBI server for Aibo doesn't give
you a direct access to force control. But if your robot can handle force controlled joints, you can imagine
to use joint.force variables instead of joint.val and this will work if the server is properly programmed. It
all depends on the underlying hardware.

However, Aibo is equipped with force sensing devices for any joint and you can access them in URBI via
the force field of your device: device.force

You can also access a calculated force evaluation done by comparing the expected trajectory of the joint
with the actual trajectory. When a resisting obstacle is put in the way, this quantity increases as the
force. You can access this quantity with the 'e extension on the device position value, like that:
device.val'e. This mechanism is very general and is available even on robots whose hardware does not
provide a force feedback like device.force

